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ON THE USE OF APPROXIMATE ANALYTICAL SOLUTIONS
IN SOLVING OPTIMUM TRAJECTORY PROBLEMS

By Donald J. Jezewski
Manned Spacecraft Center

SUMMARY
30697

A method is presented for obtaining numerical solutions of nonlinear,
optimum trajectory problems by using an approximate analytical solution in a
convergence process., Convergence to specified terminal conditions is based on
an analytic solution representing a reasonable approximation to the nonlinear
system of equations.

A numerical example of three-dimensional, time-optimal trajectory solutions
in vacuum with a constant thrust is used to illustrate the technique. A gravi-
tational force varying as the inverse square of the radius is considered. The
approximate analytic solution is obtained from a system of quasi-optimum tran-
scendental equations. This analytic solution is used to obtain the initial and
succeeding approximations to the initial values of the Lagrange multipliers.
Generally, only a few iterations are required to obtain solutions which satisfy

specified boundary conditions. /42z:/23

INTRODUCTICN

The requirement for solutions of nonlinear, optimum trajectory problems
has steadily increased in recent years. The nonlinear differential equations
are difficult to solve because of the deficiency of a process which would con-
verge rapidly to the specified boundary conditions. The first order perturba-
tion techniques used in convergence processes normally work well in the vicinity
of the solution where the linearity assumption is wvalid, but they are usually
unpredictable when large errors are present.

The present paper deals with a techniqgue which uses an approximate
analytical solution in a convergence process for the corresponding nonlinear
system of equations (refs. 1 and 2). The basis for convergence is that the
solution curves of both the approximate and nonlinear equations are similar so
that an identical change in the initial values of the Lagrange multipliers in
each will produce approximately the same change in the terminal boundary con-
ditions. These terminal boundary errors can be nullified by generating correc-
tions to the initial values of Lagrange multipliers from the analytic solution.
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SYMBOLS

unit vectors in r, 8, and ¢ directions, respectively

azimith angle measured from 1 deg

e)
terminal boundary vector

initial values of Lagrange multipliers

analytic solution

general nonlinear functions

function defined by equation (4)
altitude, ft

specific impulse, sec

logical control switch

mass of vehicle, slugs

radius to vehicle from center of attracting body, ft
thrust, 1lb

time, sec

components of total velocity in %$, lr’ and 1, directions,

respectively, ft/sec ®
total velocity, ft/sec

initial weight of vehicle, 1b

inertial reference frame, ft
state vector
control vector

function defined by equation (A10)

function defined by equation (Al2)
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Subscripts:
0,1

d

I

R

Superscripts:

Operators:

(")

flight-path angle, deg
latitude angle, deg

Lagrange multipliers

gravitational constant, ft5/8e02
longitude angle, deg
thrust pitch angle measured from local horizontal plane, deg

thrust yaw angle measured from l¢’ deg

initial and final values of state and control variables
referring to a corrected solution
referring to an integrated solution

reference solution

vector gquantity
approximate value of variables

transpose matrix

time differentiation
ANALYSIS

Statement of Problem

Consider a system of first-order differential equations of the form

(253) = 0

N

- .
X (to)glven tg < t <t (1)



where ﬁ’ and & are respectively the state and control vectors. Certain
terminal boundary conditions on the state vector are desired of the form

[
B [X(tl>’tl] =0 (2)
The problem is to determine the control vector af(t) which forces the state

from its given initial values ETtd) to the boundary conditions defined by
equation (2).

In optimization problems, the control vector is obtained from an optimality
condition given by

OH/da = 0 (3)

where
- °
E-n T 2(RR3e) ()

The superscript T refers to the transpose matrix. The A's are Lagrange
multipliers governed by the differential equation

L(Z)-E-o (5)
ox

This system of nonlinear equation (equations (1) to (5)) has a solution X (t)
for any initial values of the Lagrange multipliers X’(t0>. The initial control
vector is obtained from equation (3) by the choice of the multipliers X’(to).
Thus, the problem is reduced to one of determining the initial vector X><t0>'

Approximate Solution

Consider an approximate analytic solution of the described system of
nonlinear equations such that the solution evaluated at the terminal boundary
conditions is

e
1

,

5

2 (@7 Ty, %0) - 0 5 -7 (n) (e
X, =% (to)




where the circumflex over the variable indicates an approximate solution and
the subscript R refers to a reference value. This solution can generally be
derived by applying some simplifying assumptions to the nonlinear equationi.

The initial values of the lagrange multiplier from the analytic solution X;

represent a first approximation to the Lagrange multipliers of the nonlinear
system of equations. Ideally, they can be solved explicitly although in
practice the equations are usually transcendental, and iterative techniques must
be applied.

Iterative Technique

Figure 1 is a logical flow chart of the iterative technique used in the
convergence process. A switch k governs the various phases of the solution.
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Figure 1. - The use of an analytic solution in a convergence technique

With the desired terminal boundary conditions and the switch kX equal to
O, the analytic solution is solved for the initial values of the Lagrange
multipliers X% denoted as the reference solution. If the nonlinear system
of quations is integrated to a terminal cutoff using the initial yalues i;
and X;, the resulting terminal vector E} should resemble the desired terminal
boundary conditions. The error in these conditions is indicative of the accuracy
of the approximate solution. Replacing the desired boundary conditions by those

-

obtained from the integrated solution B= BI’ the analytic solution is resolved



N
for the initial vector N. The switch k is set equal to +1. In the analytic
solution, a change in the initial vector of

&N =N - N (7)

N =8 -F (8)

Since the analytic solution is an approximation to the nonlinear system of
equations, it is assumed that the negative of this correction should produce an
approximate change in the terminal boundary conditions of the integrated solu-
tion. Therefore, the corrected initial value of the Lagrange multipliers for
the nonlinear system of equations is

- 55
A, =N - A (9)

The switch k for the next and all future passes is set equal to -1. The
procedurg is repeated with one exception. The correction to the reference

vectorA X; is obtained by subtracting the multiplier from the analytic solu-

tion N and the previous integrated solution N . This correction is given
by ¢

~ el
N =N

AN =N-XN (10)

[¢]

The solution is continued in this manner until the terminal boundary conditions
approach the desired conditions within some arbitrary tolerance. Battin and
Gibson (refs. 3 and 4) have used a similar technique in solving circumlunar
trajectories using a matched conic as the analytic solution.

DISCUSSION OF RESULTS

The example problem that is used to illustrate the solution is a time-
optimun descent from lunar orbit. The problem is typical of a number of
examples which were solved. Refer to appendix A for a description-of the
numerical problem and the results of the derivation of the analytic solution.

An IBM 7040 electronic data processing machine was used for the computa-
tions. The solution time varied with the individual problem, depending mainly

on the number of iterations required. For the longitude-free solution pre-
sented, each iteration required approximately 6 seconds.

6
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" The iteration data and terminal boundary conditions are listed in table I
for a time-optimum descent from a lunar orbit to an altitude of 5000 feet. The
initial multipliers — those listed in the first iteration — were obtained by
evaluating equations (A13) to (Al8) of appendix A from results obtained by the
analytic, quasi-optimum solution. The equations given in appendix B were inte-
grated forward using these initial conditions. The independent variable, time,
was chosen as a stopplng condition for the integration, since a value of this
quantity is obtained from the analytic soiution. For each subsequent iteration,
the terminal time was corrected in the same manner as the initial values of the
Lagrange multipliers. Listed below the multipliers in table I are the terminal
conditions on the boundary vector. A comparison of these values with the desired
terminal boundary conditions shows good agreement, with the largest apparent
error being in altitude. (This error is misleading, for the problem is actually
solved in terms of the magnitude of the radius vector and not the altitude as
the data imply. The error in this variable is less than 1 percent for this
iteration.) The solution can be observed to converge very rapidly; each itera-
tion, which required only 5 or 6 seconds to compute, reduced the errors in the
terminal boundary vector and the initial values of the Lagrange multipliers by
approximately 1 magnitude. A comparison of the multipliers in the first and
last iteration indicates the excellent approximation of the analytic solution
and the acceptability of the convergence technique. Total solution time for
this problem was less than 30 seconds,



TABLE I.- TIME OPTIMUM DESCENT FROM LUNAR ORBIT

-

(a) Iterations
1 2 3 L
Moo 0.0 0.0 0.0 0.0
xe-lo“ -17.16130 -22.23967 -22.7387T4 -22.73913
7\5-106 11.65346 10.65851 -.26852 - 1746k
N e e 1.0 1.0 1.0 1.0
7\5-10l -1.219591 -.880386 -.943033 - .9L3845
7\6-10l -1.17%105 -1.153440 -1.173056 -1.173146
vy ft/sec 678.5133 89.3276 99.7368 100.0205
T, deg -86.16649 -7.18572 26271 .00499
A, deg -108.6837 -87.3814 -86.9300 -86.998L
h,, ft =71 477.5 5411.5 5062.5 5000.4
6., deg - .366338 - .346616 -.351411 -.3515T4
¢, deg . . .. -28.02573 -28.03312 -28.03926 -28.03928
ty, sec . . .. 326,0405 327.6104 327.4008 327.3864
(b) Boundary conditions
[T/WO = 0.4172; ISp = 314 sec]
cggg?iiiis v, ft/sec T, deg | A, deg h, ft g, deg p, deg
Initial 5685 0 -83.3807| 50 000 | -1.5321 -17.93
Terminal 100 0 -86.9994 5 000 -0.3516 Free
8




CONCLUDING REMARKS

A technique has been presented for obtaining solutions of optimum trajec-
tory problems by using an approximate analytic solution in a convergence process.
Convergence is based on the analytic solution representing a reasonable approxi-
mation to the nonlinear equations. A numerical example of time-optimum,
constant-thrust trajectory solution in three dimensions has been used to illus-
trate the technique. The analytic equations were obtained from a quasi-optimum
solution in which the initial values of Lagrange multipliers were an excellent
approximation. Generally, only a few iterations were required to converge to
the exact solution.

Numerical results for a longitude-free solution are presented for a descent
from lunar orbit. Solution time on an IBM TOKO digital computer was approxi-
mately 30 seconds for this case.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, April 5, 1905




APPENDIX A

DERIVATION OF APPROXIMATE LAGRANGE MULTIPLIERS

The mathematical model employed is that of a mass particle with three
degrees of freedom referred to a set of rotating coordinates. The axis system
and the associated notation are illustrated in figure 2. The nonlinear differ-
ential equations for this model and their associated Buler-Lagrange equations
are given in appendix B. The vehicle is assumed to have a constant thrust and
mass flow rate. No aerodynamic forces are considered. The angles x and VY

are control varisbles and may be chosen arbitrarily. The final time tl was

selected to be minimized since, under the above assumptions, this will yield a
minimim fuel consumption.

If, in the equations of motion,
NASA-S-65-2921 the nonlinear terms are replaced by
z power series in time and the calculus
of variation is applied to this lin~
earized set of equations, the following
optimality conditions result (ref. 2).

]'
\I/i' tan x = 7‘5/7‘4 (AL)
r
; ' . sin ¥ = 7‘6/7‘4 (A2)
< - i ,/AVY

S L s where ¥ has been assumed to be small.

h The multipliers are of the form

X
A =0y (A3)
A, = C, (k)
A5 = Cy (A5)
N, =Cy - Cjt (A6)
= - C,t A

Ay = C5 - Cp (A7)
Figure 2. - Coordinate system and angle definition )\6 - C6 _ 03t (A8)

where Cl to C6 are constants. If the terminal boundary condition on the
longitude is allowed to be free, the multiplier Kl is O. This result also

facilitates integrating the linearized equations of motion.

10



Ewaluating equations (Al) and (A2) at the initial and final time and
making use of equations (A3) to (A8), the following relationships among the
constants C will result:

<J5/c4 = tan X (A9)
Co/C, = B, = (tan X = tan xl)/‘bl (A10)
C6/C,+ = sin ¥, (A11)
c5/c, = By = (sin ¥, - sin ‘ifl>/tl (A12)

Using these relationships, the Lagrange multipliers take the form

M =0 (A13)
Ay = B (A1k)
As = By (A15)
A =1 (AL6)
7\5 = tan x, - th (A17)
N =sin ¥, - Byt (A18)

where the constant Ch has been arbitrarily set equal to unity since the

Fuler-lagrange equations are homogenous in the multipliers.,

From the solution of the analytic equations in reference 2, the initial
and final values of the controls ¥ and Y along with the value of the final
time t, are obtained. With these results, equations (A13) to (A18) are

evaluated at the initial time to obtain a first approximation to the initial
values of the lLagrange multipliers for the nonlinear system of equations.

A result which is immediately apparent from equations (Al3) to (A18) is
that a reasonably good approximation to the multipliers can be obtained by

simply guessing five new parameters: XO’ Xl, Yo, Yl, and tl. A knowledge

of this set of variables for a particular problem would certainly be more
extensive than the set of multipliers. Except for cases in which the multi-
pliers are extremely sensitive to the terminal conditions, as in a deceleration
problem, this method should prove fruitful.

11



APPENDIX B

CONSTRAINT AND EULER-LAGRANGE EQUATIONS

The mathematical model is a mass particle with three degrees of freedom
referred to a set of rotating coordinates. The axis system and the associated
notation are illustrated in figure 2. 1In spherical coordinates, the equations
of motion are:

e .2 .2 2 2
r - r(G + ¢ cos e) = T/m sin x - u/r (B1)
LL) . 'Y .2 . .
ro +2r 6 +r¢ sine cos § = T/m cos X sin ¥ (B2)
r§ cos - 2r § @ sin § + 2F ¢ cos § = T/m cos x cos ¥ (B3)
m =, - mt
m = constant (Bk4)
to <t < tl

where T/m is the acceleration due to the thrust and x and Y are arbitrarily
chosen control variables. Let

v =7 (B5)

u=rq cos 0 (B6)

Ww=r0 (BT)

The constraint functions are

f=r ¢ cos 8 -u=0 (B8)
f2=1'n-v=o (B9)
f5=ré-w=0 (B10)
f), = U-u(v-wtang)/r - T/mcosx cos ¥ =0 (B11)
f5 = Q + (uz + w2>/& - T/m sin X + p./r2 =0 (B12)
fg = v - (vw + u.2 tan e)/& - T/mcos X sin¥ =0 (B13)

12




The Euler-Lagrange equations corresponding to the six first-order
differehtial equations described in equations (B8) to (B1l3) are

M

]

- 7\l(v - wtan g)/r (BLY)

7.\2 (7\1 u + 7\3 w)/r - [7\4 u(v - w tan 6)

- 7\5(112 PG aJ‘/r) + ?\6(vw + v tan e)i\/re (B15)

. 2
=~ (u\ N _ A - sec” § ¢
7\5 (u , tan g + v 5)/r u(w i u7\6> re (B16)
7.\4 =-NM + [7\4(v - w tan g) - 2u(7\5 - Ng ten e)]/r (B17)
7.\5 =-A (7\1‘_ u + Ng w)/r (B1L8)
7.‘6 == - (7‘4 w tan @ + 2\ W - Ag v)/r (B19)

The optimality conditions are
A= cos ¥
tan X = 5—)\— (B20)
4

tan ¥ =N, /2, (B21)

13
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